Computing an Adaptive Mesh in Fluid Problems Using Neural Network and Genetic Algorithm with Adaptive Relaxation
نویسندگان
چکیده
A method based on neural network with Back-Propagation Algorithm (BPA) and Adaptive Smoothing Errors (ASE), and a Genetic Algorithm (GA) employing a new concept named Adaptive Relaxation (GAAR) is presented in this paper to construct learning system that can find an Adaptive Mesh points (AM) in f luid problems. AM based on reallocation scheme is implemented on different types of two steps channels by using a three layer neural network with GA. Results of numerical experiments using Finite Element Method (FEM) are discussed. Such discussion is intended to validate the process and to demonstrate the performance of the proposed learning system on three types of two steps channels. It appears that training is fast enough and accurate due to the optimal values of weights by using a few numbers of patterns. Results confirm that the presented neural network with the proposed GA consistently finds better solutions than the conventional neural network.
منابع مشابه
Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملAn intelligent computing technique for fluid flow problems using hybrid adaptive neural network and genetic algorithm
A new hybrid adaptive neural network (ANN) with modified adaptive smoothing errors (MASE) based on genetic algorithm (GA) employing modified adaptive relaxation (MAR) are presented in this paper to construct learning system for complex problem solving in fluid dynamics. This system can predict an incompressible viscous fluid flow represents by stream function ( ) through symmetrical backwardfac...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 17 شماره
صفحات -
تاریخ انتشار 2008